Mapping of Vegetation Using Multi-Temporal Downscaled Satellite Images of a Reclaimed Area in Saemangeum, Republic of Korea
نویسندگان
چکیده
The aim of this study is to adapt and evaluate the effectiveness of a multi-temporal downscaled images technique for classifying the typical vegetation types of a reclaimed area. The areas reclaimed from estuarine tidal flats show high spatial heterogeneity in soil salinity conditions. There are three typical vegetation types for which the distribution is restricted by the soil conditions. A halophyte-dominated vegetation is located in a high saline area, grass vegetation is found in a midor low saline area, and reed/small-reed vegetation is situated in a low saline area. Multi-temporal satellite images were used to classify the vegetation types. Landsat images were downscaled to take into account spatial heterogeneity using cokriging. A random forest classifier was used for the classification, with downscaled Landsat and RapidEye images. Classification with RapidEye images alone demonstrated a lower level of accuracy than when combined with multi-temporal downscaled images. The results demonstrate the usefulness of a downscaling technique for mapping. This approach can provide a framework which is able to maintain low costs whilst producing richer images for the monitoring of a large and heterogeneous ecosystem.
منابع مشابه
Identification and investigation of the area under cultivation in Lenjanat using Landsat 8 satellite images
The cognition of cropping pattern is important for planning and resource management .Remote sensing as a science and technology of spatial information and geographic information system due to having the analytical facilities can play a key role in determining the distribution of crops and their lands under cultivation. In this research, in order to identify and separate the lands under cultivat...
متن کاملThe Preparation of Updated Vegetation Maps by Processing Satellite Images: A Way in Sustainable Management of Agriculture
An important factor in sustainable agriculture and economic management is to calculate areas under different crops that the inputs of agriculture connect to this topic. Planning of agricultural mechanization, fertilizer and pesticide requirements, pests and diseases control, estimates of agricultural production, income and tax and financial planning, all linked to the cultivated areas and estim...
متن کاملvegetation change detection using multi-temporal remotly sensed data during recent three decades by artificial intelligence technique (Case study: protected area of Bashgol)
Quantitative and qualitative information of vegetation and its changes in duration of time as a basic foundation of determination of habitat quality, priority of protected area and also determination of price of ecosystem services in order to optimum management of natural resources and sustainable development is a very important technical point. In other hand, researchers are interested in rem...
متن کاملCrop Land Change Monitoring Based on Deep Learning Algorithm Using Multi-temporal Hyperspectral Images
Change detection is done with the purpose of analyzing two or more images of a region that has been obtained at different times which is Generally one of the most important applications of satellite imagery is urban development, environmental inspection, agricultural monitoring, hazard assessment, and natural disaster. The purpose of using deep learning algorithms, in particular, convolutional ...
متن کاملThe Study of Mazandaran Province Forest and Rangeland Vegetation Changes Trend by Satellite Images
Vegetation in any landscape reflects its health condition. Monitoring land use change and land cover plays a key role in environmental planning and management. Mazandaran province has always been considered by tourists due to its high tourism potential and consequently the vegetation, especially the forest, has been damaged. In this study, vegetation Contiguity and integrity in Mazandaran using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 9 شماره
صفحات -
تاریخ انتشار 2017